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Numerous land surface phenology (LSP) datasets have been produced from various coarse 31 

resolution satellite data and different detection algorithms from regional to global scales. In contrast 32 

to field-observed phenological events that are defined by clearly evident organismal changes with 33 

biophysical meaning, current approaches to detecting transitions in LSP only determine the timing of 34 

variations in remotely sensed observations of surface greenness. Since activities to bridge LSP and 35 

field observations are challenging and limited, our understanding of the biophysical characteristics 36 

of LSP transitions is poor. Therefore, we set out to explore the scaling effects on LSP transitions at 37 

the nominal start of growing season (SOS) by comparing detections from coarse resolution data with 38 

those from finer resolution imagery. Specifically, using a hybrid piecewise-logistic-model-based 39 

LSP detection algorithm, we detected SOS in the agricultural core of the United States—central 40 

Iowa—at two scales: first, at a finer scale (30m) using reflectance generated by fusing MODIS data 41 

with Landsat 8 OLI data (OLI SOS) and, second, at a coarser resolution of 500m using Visible 42 

Infrared Imaging Radiometer Suite (VIIRS) observations. The VIIRS SOS data were compared with 43 

OLI SOS that had been aggregated using a percentile approach at various degrees of heterogeneity. 44 

The results revealed the complexities of SOS detections and the scaling effects that are latent at the 45 

coarser resolution. Specifically, OLI SOS variation defined using standard deviation (SD) was as 46 

large as 40 days within a highly spatially heterogeneous VIIRS pixel; whereas, SD could be less 47 

than 10 days for a more homogeneous set of pixels. Furthermore, the VIIRS SOS detections equaled 48 

the OLI SOS (with an absolute difference less than one day) in more than 60% of OLI pixels within 49 

a homogeneous VIIRS pixel, but in less than 20% of OLI pixels within a spatially heterogeneous 50 

VIIRS pixel. Moreover, the SOS detections in a coarser resolution pixel reflected the timing at 51 

which vegetation greenup onset occurred in 30% of area, despite variation in SOS heterogeneities. 52 

This result suggests that (1) the SOS detections at coarser resolution is controlled more by the earlier 53 
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SOS pixels at the finer resolution rather than by the later SOS pixels, and (2) it should be possible to 54 

well simulate the coarser SOS value by selecting the timing at 30
th

 percentile SOS at the finer 55 

resolution. Finally, it was demonstrated that in homogeneous areas the VIIRS SOS was comparable 56 

with OLI SOS with an overall difference of less than 5 days.  57 

 58 
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1. INTRODUCTION  63 

Remote sensing has been widely used to characterize seasonal vegetation dynamics at 64 

continental and global scales during the last three decades, because it can provide frequent and 65 

consistent measurements that are spatially exhaustive. Due to the coarse spatial resolution 66 

(>500m) of synoptic sensors, remote sensing monitors seasonal dynamics of the vegetated 67 

land surface that often includes multiple types of vegetation mixed with other scene objects, such as 68 

soil, water, and human structures. Land surface phenology (LSP) is the term used to distinguish the 69 

object of remote sensing from traditional notions of species-specific organismal phenology observed 70 

at ground level  (de Beurs and Henebry 2004; Henebry and de Beurs 2013). The most commonly 71 

used satellite data for LSP characterization have been from the Advanced Very High Resolution 72 

Radiometer (AVHRR) instruments at a spatial resolution from 5km-8km (White et al., 2009; Zhang 73 

et al., 2007, 2014; de Jong et al., 2011; Julien and Sobrino, 2009; Zhou et al., 2001), because they 74 

boast the longest and densest time series available at a global coverage. With the availability of the 75 
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Moderate-resolution Imaging Spectroradiometer (MODIS) data since 2000, which substantially 76 

improved radiometric and geometric properties, atmospheric correction, and cloud screening of the 77 

time series, it has been possible to characterize a more reliable and consistent LSP at spatial 78 

resolutions from 250 m to 1000 m (Ganguly et al. 2010; Tan et al. 2011; Zhang et al. 2006). 79 

Recently, Landsat data at a spatial resolution of 30 m has also been applied to retrieve LSP (Fisher et 80 

al. 2006; Krehbiel et al. 2015; Melaas et al. 2013; Walker et al. 2012); however, Landsat’s relatively 81 

long period for repeat observations (~16 days) have made  it impractical to consistently produce 82 

annual time series at a regional scale for most parts of the planet.  83 

A number of approaches have been developed to detect LSP, particularly, the start of growing 84 

season (SOS), based on the time series of satellite observations. Most approaches first smooth and 85 

gap-fill time series of vegetation indices using one or more of the methods that include asymmetric 86 

Gaussians (Jonsson and Eklundh 2002), piecewise logistic function (Zhang et al. 2003), Savitzky-87 

Golay filter (Chen et al. 2004), best index slope extraction algorithm (BISE) (Viovy et al. 1992), 88 

moving average (Reed et al. 1994), moving median, iterative interpolation (Julien and Sobrino 89 

2010), Fourier fitting (Moody and Johnson 2001; Wagenseil and Samimi 2006), polynomial curve 90 

fitting (Bradley et al. 2007), or the convex quadratic model based on thermal time (de Beurs and 91 

Henebry 2004; Henebry and de Beurs 2013). The timings of phenophase transitions during the 92 

vegetation growing season are then extracted based on either predefined absolute or relative 93 

thresholds of vegetation indices (Jonsson and Eklundh 2002; Lloyd 1990; Reed et al. 1994; White et 94 

al. 1997), or features of the fitted curves such as the inflection points (de Beurs and Henebry 2010; 95 

Tan et al. 2011; Zhang et al. 2003).  96 

While a great number of LSP data have been produced from various satellite datasets and 97 

approaches, the biophysical meaning and scaling effects of these phenological data have rarely been 98 
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investigated. Relative to the large number of LSP datasets produced, the validation activities have 99 

been surprisingly limited and simple. Validation efforts have been typically conducted in one or 100 

more of the following ways.  101 

First, the extracted LSP transition or phenometrics have been indirectly compared with model 102 

outputs or other variables observed at ground level. For example, the LSP SOS calculated from 8 km 103 

15-day composite AVHRR NDVI data was linked to phenological timings from empirical or 104 

bioclimatic models, such as the climate data-driven phenology (Schaber and Badeck 2003; Schwartz 105 

and Reed 1999), and associated with ground-based records from cryospheric and hydrological 106 

networks (White et al. 2009). These comparisons have generally shown poor correlations, such as no 107 

significant relationship between LSP SOS and the modeled phenology (Schwartz and Hanes 2010), 108 

or differences between AVHRR SOS and ground observations that could exceed two months (White 109 

et al. 2009).  110 

Second, pixel-based LSP has also been compared with phenological observations of vegetation 111 

communities within field plots. For example, the MODIS SOS in a 1 km
2
 footprint exhibited a root 112 

mean square error (RMSE) of  20.5 days and a bias of 17 days compared with in-situ observations of 113 

36 trees in a 0.5ha (0.005km
2
) plot in France (Soudani et al. 2008). Satellite derived green-up timing 114 

had a RMSE of about 15 days as compared with leaf-out dates of four woody species observed from 115 

the PlantWatch citizen science project across Canada (Delbart et al. 2015).   116 

Third, LSP SOS dates have also been compared with landscape scale observations. By 117 

aggregating individual plants to population, community, and landscape scales within homogeneous 118 

regions consisting of deciduous and conifer plants, indices of landscape phenology —a concept 119 

distinct from land surface phenology (Liang and Schwartz 2009)— were derived and compared with 120 

MODIS SOS dates (Liang et al. 2011). The results indicated the LSP SOS dates matched well with 121 
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full bud burst in deciduous forests, but not so well in conifer forests, which lagged LSP SOS dates 122 

by about 10 days.     123 

Fourth, LSP SOS dates have recently been compared to PhenoCam observations. PhenoCam 124 

provides consistent and continuous monitoring of vegetation canopy conditions using tower-125 

mounted webcams that collect images multiple times a day (Hufkens et al. 2012; Richardson et al. 126 

2009; Richardson et al. 2007; Sonnentag et al. 2012). It has provided important information for 127 

validating and understanding satellite-derived LSP. However, PhenoCam analyses rely on vegetation 128 

indices derived from visible wavelengths, introducing some differences from satellite vegetation 129 

indices that are derived from both red and near infrared reflectance. Moreover, a mismatch of 130 

camera field of view angle and its large variation with the view angle of satellite pixel-coverage may 131 

cause major uncertainties (Elmore et al. 2012; Graham et al. 2010; Hufkens et al. 2012; Keenan et 132 

al. 2014).   133 

Validation efforts have shown a discrepancy of more than 10 days between LSP and other 134 

phenological observations. This discrepancy arises in part from the arguably erroneous assumptions 135 

that (1) field observations are obtained from large homogeneous sites, and (2) LSP measurements 136 

should be consistently equivalent to the field observations despite the scaling differences. 137 

Homogeneous SOS values within a moderate or coarse satellite footprint are rarely observed 138 

because the timing of phenophase transitions vary greatly among different species and even within 139 

the same species due to ecotypic variation or local site conditions. Indeed, woody understory plants 140 

often leaf out more than three weeks earlier than the forest canopy (Augspurger et al. 2005). 141 

Budburst dates for coexisting tree species in temperate forests can vary by three weeks or more  142 

(Lechowicz 1984). Similarly, budburst dates among woody species within an area of locally 143 

homogeneous forests can even vary by roughly six weeks (Richardson and O’Keefe 2009). Even in 144 
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relatively homogeneous deciduous forests (with similar composition, age, and structure), leaf out 145 

timing in a same species can vary more than two weeks spatially within a 500m area (Fisher et al. 146 

2006). 147 

These findings indicate that simple comparisons of LSP with field observations 148 

may only illuminate their differences rather than provide meaningful validation. This situation arises 149 

mainly because the scaling effects on the coarse resolution LSP are poorly understood. Field 150 

phenological measurements have sharply defined life cycle events, such as the appearance of first 151 

bloom, first leaf unfolding, first leaf coloration, etc. In contrast, “events” in LSP are not sharply 152 

defined, but rather are transitions within fitted curves of remotely sensed “greenness” that has 153 

equivocal biophysical meaning. This study, therefore, aims to explore the question: what kinds of 154 

SOS occurrences at the field scale translate into coarser resolution LSP “events”?  155 

Our hypothesis is that SOS at coarser resolution becomes detectable once the vegetation starts to 156 

greenup in a certain proportion of finer resolution pixels. A corollary to this hypothesis is that 157 

coarser resolution SOS is driven by the portion of earlier SOS pixels at the finer resolution rather 158 

than the later SOS pixels. To explore this hypothesis, we made the assumptions that (1) vegetation 159 

phenology, environmental conditions, and microclimate within the 30 m scale are relatively 160 

homogenous, and (2) the SOS derived at the finer scale could well represent the start of surface 161 

vegetation leaf seasonality. Thus, we first detected LSP at finer scale (30 m) using the reflectance 162 

data from the fusion of MODIS data with Landsat 8 OLI observations, and then at the coarser 163 

resolution (500 m) using Visible Infrared Imaging Radiometer Suite (VIIRS) observations during 164 

2013 and 2014. The scaling effect on SOS at coarser resolution was then investigated by linking to 165 

the SOS observations at the finer scale. Our study area is central Iowa in the United States (US), 166 

where agricultural lands dominate in the northern part of the State and forests and grasslands occur 167 
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in the south. The timing of phenological events spans a wide range in central Iowa from low 168 

spatiotemporal heterogeneity within crop fields, to moderate spatiotemporal heterogeneity between 169 

different crop types, to high spatiotemporal heterogeneity in mixtures of croplands and natural 170 

vegetation.  171 

2. Methodology 172 

2.1 Datasets 173 

 The data used here include land cover classifications, Landsat-MODIS fused surface reflectance, 174 

and VIIRS surface reflectance in central Iowa in the Western Corn Belt.   175 

2.1.1 Land cover data 176 

We used land cover data from the USDA (United States Department of Agriculture) National 177 

Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) in 2013 and 2014. The CDL is a 178 

crop-specific land cover data layer with a ground resolution of 30 m. The CDL products were 179 

generated using satellite imagery from the Operational Land Imager (OLI) and Thermal Infrared 180 

Sensor (TIRS) on Landsat 8 and the Disaster Monitoring Constellation (DMC) DEIMOS-1 and UK2 181 

sensors, which were collected during the crop growing season. Imperviousness and natural 182 

vegetation cover data were obtained from the USGS (United State Geological Survey) National 183 

Land Cover Database 2011 (Homer et al. 2015).  184 

The overall classification accuracies for major crops (soybeans and corn) in NASS CDL were 185 

generally above 96%. The typical commodity crop rotation alternates between corn and soybeans.  186 

We simplified the CDL crop classes to corn, soybean, hay (aggregating these classes: alfalfa, other 187 

hay/non alfalfa), other crops (aggregating these classes: barley, wheat, other small grains, rye, oats, 188 
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millet, and spelt), grass (grassland/pasture), forests, shrublands, non-vegetated areas (aggregating 189 

these classes: fallow/idle cropland, developed/open space, developed area, and barren), and open 190 

water/wetlands (aggregating these classes: open water, woody wetlands, and herbaceous wetlands) 191 

(Figure 1). The aggregated land cover data were then reprojected and resampled to match the 192 

Landsat scene (path 26 and row 31).  193 

 194 

Figure 1. Spatial pattern of land cover types from NASS in 2014. Waterloo and Des Moines are the two 195 

largest cities in the area and are indicated by the black pushpins. Land cover types in 2013 were similar to 196 

those in 2014, with some spatial changes arising from crop rotation.  197 

2.1.2 Daily Landsat-MODIS fused data  198 

Satellite observations with high temporal frequency and high spatial resolution can be generated 199 

by fusing Landsat and MODIS data together (Gao et al. 2006). One commonly used data fusion 200 

methodology is the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), which 201 

combines the higher spatial resolution of Landsat data with the high temporal MODIS observations 202 
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to produce higher spatiotemporal resolution data (Gao et al. 2006; Hilker et al. 2009; Zhu et al. 203 

2010). This approach compares one or more pairs of observed Landsat and MODIS datasets 204 

collected on the same day to predict maps at Landsat-scale on other MODIS observation dates (Gao 205 

et al., 2006). Recently, STARFM has been modified and extended for different applications, which 206 

includes the Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH) 207 

for the detection of reflectance changes associated with land cover change and disturbance (Hilker et 208 

al. 2009), and an enhanced STARFM (ESTARFM) approach for the fusion of very heterogeneous 209 

scenes without “pure” pixels (Zhu et al. 2010).  210 

The STARFM approach was used here to produce Landsat-MODIS fused daily 30 m surface 211 

reflectance in 2013 and 2014 (Gao et al., 2006; 2017). Specifically, the MODIS daily directional 212 

surface reflectance (250 m MOD09GQ and 500 m MOD09GA) (Vermote et al. 2002) in tiles 213 

H10V04 and H11V04 were obtained and corrected to Nadir Bidirectional Reflectance Distribution 214 

Function (BRDF)-Adjusted Reflectance (NBAR) data using MODIS BRDF product (500 m 215 

MCD43A1) (Schaaf et al. 2002). The Landsat 8 OLI surface reflectance data (in path 26 and row 31) 216 

were downloaded from the USGS EROS (Earth Resources Observation and Science) Data Center, in 217 

which the Landsat digital number data were calibrated and atmospherically corrected using the 218 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al. 2006). The 219 

OLI observations we used here were acquired at the following days of year (DOY) in 2013: 140, 220 

188, 252, 268, 284, 300; and in 2014: 79, 95, 127, 143, 175, 191, 271, 303, 351. Note that Landsat 7 221 

ETM+ imagery was not used because of the gaps resulting from the failure of the Scan Line 222 

Corrector (SLC). Finally, Landsat images on each MODIS date were then simulated with STARFM 223 

using co-temporal pairs of Landsat and MODIS imagery. The fused daily 30 m time series exhibited 224 

mean biases of ±0.01 for the red band and ±0.02 for the NIR band. Henceforth this data will simply 225 
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be called “OLI”.  In this dataset, an observation was defined as good quality if it was from either a 226 

cloud-free observation in Landsat or MODIS NBAR produced using a full BRDF inversion model 227 

(Schaaf et al. 2002), while the remaining observations were considered as other (poor) quality.  228 

2.1.3 VIIRS NBAR data 229 

The VIIRS instrument onboard the Suomi National Polar-orbiting Partnership (NPP) has a 230 

similar design to MODIS. VIIRS observes the surface at local time around 1:30pm. It acquired its 231 

first measurements on November 21, 2011. The spatial resolution is 375 m at nadir for the red (0.60-232 

0.68m) and near infrared (0.846-0.885 m) bands. The VIIRS NBAR is produced utilizing a 233 

similar algorithm as the MODIS Collection V006 daily BRDF/Albedo/NBAR product (Schaaf et al. 234 

2002). The NBAR product is ideal for land surface analysis since the view angle effects have been 235 

removed using BRDF estimates and the daily cloud and aerosol contaminations have been reduced 236 

or corrected in the surface reflectance product. Although the BRDF estimation is based on 237 

directional reflectance within a temporal window, the reflectance on the day of interest is 238 

emphasized to retain the phenological characteristics of that day. This product also provides quality 239 

assurance (QA) field indicating the quality of the surface reflectance, which includes snow flag, 240 

good quality, other (poor) quality, and fill values (Schaaf et al. 2002). In this study, the daily 500m 241 

NBAR data were produced for the tiles of H10V04 and H11V04 from January 1 2013 to December 242 

31 2014.  243 

 244 

2.2 Land surface phenology detection 245 

First, the daily two-band enhanced vegetation index (EVI2) was generated from both the VIIRS 246 

NBAR and OLI datasets. The EVI2 is calculated from red and near infrared reflectance by removing 247 
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the blue-reflectance influence on enhanced vegetation index (EVI) through an empirical relation 248 

between red and blue reflectance (Jiang et al. 2008; Rocha and Shaver 2009). Thus, EVI2 can also 249 

be derived from satellite sensors without blue reflectance, such as the AVHRR. EVI2 remains 250 

functionally equivalent to EVI (enhanced vegetation index) and has previously been used to monitor 251 

vegetation phenology (Jiang et al. 2008; Rocha and Shaver 2009; Zhang et al. 2014), but it is less 252 

sensitive to background reflectance, including bright soils and non-photosynthetically active 253 

vegetation (i.e., litter and woody tissues) than some other vegetation indices (Rocha et al. 2008).  254 

Second, land surface phenological metrics were then retrieved using the hybrid piecewise-255 

logistic-model-based LSP detection algorithm (HPLM-LSPD; Zhang 2015; Zhang et al. 2003). The 256 

HPLM-LSPD first reconstructed the EVI2 temporal trajectory in a pixel following previously 257 

described methods (cf., Zhang 2015). Briefly, spuriously large daily EVI2 values were removed if 258 

they were larger than 90% of the corresponding daily NDVI in the time series, which were likely 259 

subject to red band overcorrection in some observations that were contaminated by either residual 260 

snow or atmosphere (Justice et al. 2013; Zhang 2015). The daily EVI2 values were used to generate 261 

a 3-day composite dataset by applying the maximum value composite approach to the EVI2 data 262 

selected with best quality observation within the 3-day window. The EVI2 values contaminated by 263 

snow were identified using the VIIRS snow flag and were replaced using a background EVI2 value 264 

at each pixel. The background EVI2 value is referred to as the minimum EVI2 within the vegetation 265 

growing cycle that is not contaminated by snow and clouds or the maximum EVI2 during the phase 266 

of vegetation dormancy. It was determined by averaging five good observations (without cloud and 267 

snow contamination) during the winter period, which was identified using a MODIS LST (land 268 

surface temperature) climatology (LST<278K). Short gaps caused by clouds in the time series were 269 

replaced using a moving average of two neighboring good quality values starting from the point 270 
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close to larger EVI2 values. If a gap was longer than one month, the corresponding EVI2 values 271 

were replaced using good quality observations in preceding or succeeding years, but the detected 272 

LSP was labeled as low confidence. The time series of EVI2 data at each pixel was further smoothed 273 

using a Savitzky-Golay filter and a running local median filter with a five 3-day window. The 274 

median filter could remove local sharp peaks or troughs in the time series. Finally, the hybrid 275 

piecewise logistic functions were applied to reconstruct the temporal EVI2 time series.   276 

Phenological transition dates within each growth or senescence phase were detected using the 277 

rate of change in the curvature of the modeled curves. Specifically, transition dates correspond to the 278 

day of year on which the rate of change in curvature in the EVI2 time series data exhibits local 279 

minima or maxima (Zhang et al., 2003). Because phenological detections are significantly impacted 280 

by the number of good satellite observations during the period of phenological occurrences (Zhang 281 

et al. 2009), we further calculated the proportion of good quality (PGQsos) EVI2 observations during 282 

three 3-day periods before and after the start of growing season (SOS), respectively. This critical 283 

period was selected because the phenological metrics could be reasonably detected, if there was a 284 

good quality EVI2 observation within 8 days (Zhang et al. 2009).  285 

 286 

2.3 Matchup of SOS detected from OLI and VIIRS data  287 

OLI SOS and VIIRS SOS were matched spatially and qualitatively in order to compare these 288 

two datasets properly. Two VIIRS titles (H10V04 and H11V04) were first adjoined to cover the 289 

entire Landsat 8 OLI scene (path 26 and row 31). Both OLI and VIIRS data were then re-projected 290 

to the Universal Transverse Mercator (UTM) projection with a spatial resolution of 30 m and 450 m, 291 

respectively, resulting in one VIIRS pixel containing 225 OLI pixels. OLI SOS detections were also 292 

spatially matched with a grid of 3 by 3 VIIRS pixels (hereafter called the VIIRS grid) to reduce the 293 
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spatial mismatch between these two datasets. The mismatch is caused by the following factors. First, 294 

the pixel size in VIIRS red and near infrared bands is 375 m at nadir while it is over 500 m at high 295 

scan angles. Second, the actual pixel size is 463.312 m (instead of 500 m) in the NASA 500 m 296 

VIIRS reflectance product, but the spectral reflectance data represent a median effective resolution 297 

of 565m x 595m (Campagnolo et al. 2016). Therefore, we also investigated SOS using the matched 298 

VIIRS grid that contains 9 VIIRS pixels or 2025 OLI pixels to ensure a better spatial match. 299 

To qualitatively match the SOS, the SOS pixels with low PGQsos were t removed from both 300 

OLI and VIIRS detections. Based on sensitivity analysis (Zhang et al., 2009), we considered the 301 

SOS detection as high confidence if PGQsos>40%. The precision of SOS detection can be greatly 302 

reduced if there were very few or no good satellite observations during the period of SOS 303 

occurrence. Therefore, we only selected the pixels with PGQsos>40%, which are hereafter referred to 304 

as “high confidence SOS pixels”. The pairs of VIIRS and OLI SOS observations were also removed 305 

if the number of high confidence OLI SOS pixels was fewer than 200 (~90%) within a VIIRS 306 

footprint. Further, the VIIRS grids were excluded if the number of good VIIRS SOS detections was 307 

fewer than 7 out of 9 pixels.        308 

 309 

2.4 Comparison of OLI SOS and VIIRS SOS 310 

We compared VIIRS SOS with OLI SOS in order to characterize the biophysical context of the 311 

SOS derived from a coarser pixel to the SOS at finer scale. Therefore, the comparison was 312 

conducted across various levels of heterogeneity and with a set of aggregated OLI SOS values.  313 

The SOS can vary greatly in heterogeneous areas, while it is relatively similar in homogeneous 314 

areas. To understand the impact of spatial heterogeneity on SOS detections at a coarser scale, we 315 

divided the entire study area into five levels of SOS heterogeneity. To do this, the standard deviation 316 
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(SD) of OLI SOS within a VIIRS pixel and grid was calculated, and its cumulative frequency 317 

distribution was established across the entire study area in 2013 and 2014, separately. The five levels 318 

of heterogeneity for VIIRS pixels were then determined using the proportion of OLI SOS SD 319 

frequency (PSD) at an interval of 20%: 0-20% PSD represents the most homogeneous level, whereas 320 

80-100% PSD indicates the most heterogeneous level. 321 

The OLI SOS was then aggregated to be comparable with VIIRS SOS. The aggregated OLI SOS 322 

is called “SOSag” hereafter. In previous studies, the SOS at the coarser scale was generally averaged 323 

from all SOS values or high frequency SOS values at a finer scale (Delbart et al. 2015; Ganguly et 324 

al. 2010). Biophysically, the SOS becomes detectable from satellite sensors after a certain amount of 325 

leaves within the pixel start to emerge. This means that the SOS value detected in a coarser pixel is 326 

associated with earlier SOS values (the plant leaves that emerge earlier) at finer pixels rather than 327 

later SOS pixels. To explore the correspondence of VIIRS SOS to OLI SOS, we aggregated a set of 328 

SOSag by selecting the timing at a specific percentile at an interval of 5% (starting from 0.5% which 329 

represents the earliest OLI SOS) from the cumulative OLI SOS frequency distribution within a 330 

VIIRS pixel or grid (Figure 2). We call this approach “percentile aggregation”. In this way, we 331 

obtained 21 potential timings of SOSag in a VIIRS pixel or grid. From a biophysical perspective, 332 

SOSag from this percentile approach represents the date at which vegetation greenup has occurred in 333 

a certain percent of the OLI pixels, namely 0.5%, 5%, 10%, 15%, … 100%.  334 
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 335 

Figure 2. Schematic diagram of the percentile approach to aggregate SOS from finer scales (OLI) to coarser 336 

scales (VIIRS pixel or grid). The percentile represents OLI SOS distribution within a VIIRS pixel. The T1 337 

and T2 are the examples of the SOSag aggregated using 15
th
 and 80

th
 percentile, separately. 338 

 339 

VIIRS SOS was statistically compared with the SOSag using average absolute difference 340 

(AAD), mean difference (bias), root mean square difference (RMSD), and linear regression. AAD 341 

was a measure of statistical dispersion equal to the average absolute difference of two independent 342 

variables. RMSD was used to evaluate the average uncertainty between two observations. Note that 343 

root mean square error (RMSE) was not used here since both the OLI SOS and VIIRS SOS are 344 

remote sensing estimates without a clear reference a priori. Bias was used to evaluate the 345 

overestimation (positive bias) or underestimation (negative bias) of the two variables. Linear 346 

regression was used to examine the overall relation between the samples. 347 
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                                                                    (2) 349 

 350 

                                                                           (3) 351 

 352 

The statistical comparison between VIIRS SOS and OLI SOSag was conducted for 21 different 353 

potential SOSag timings and five levels of heterogeneity in 2013 and 2014, separately, for a total of 354 

210 comparisons. The analysis allowed us to determine the scale effects on the SOS at coarser 355 

resolutions. It was further used to reveal the most appropriate approach to aggregate SOS from finer 356 

resolution to coarser resolution. 357 

3. Results 358 

The SOS data derived from finer (OLI) and coarser (VIIRS) resolutions are investigated and 359 

compared. The spatial patterns of SOS and the corresponding confidence (including all different 360 

confidence levels) are presented in section 3.1, which provides the impacts of EVI2 data quality in 361 

OLI and VIIRS observations on SOS detections across the entire study area. Next, the scaling effects 362 

on SOS detections are illustrated and evaluated in sections 3.2-3.4 based on the OLI SOS and VIIRS 363 

SOS data that were of high confidence and matched spatially and qualitatively.     364 
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3.1 Spatial pattern of SOS detected from OLI data and VIIRS data 366 

Figure 3 shows the spatial patterns of SOS (including all different confidence levels) derived 367 

from OLI data and VIIRS observations in 2013 and 2014. SOS dates were similar in 2013 and 2014, 368 

although dates were slightly earlier in 2013 than in 2014. However, PGQsos was relatively poorer in 369 

2013 compared to 2014 in the southeastern region of the study area for both OLI and VIIRS data, 370 

and the northwestern region only for OLI. Overall, SOS was delayed moving northward: from DOY 371 

100 to 160. Early SOS was mainly distributed in the southern portion of the study area, where 372 

forests dominate. Relatively later SOS was found in the northwestern region, where the croplands 373 

were the main land cover. In the central eastern portion of the study area, crops and natural 374 

vegetation were interspersed: SOS exhibited dates that were earlier for natural vegetation while later 375 

for croplands.  376 

 377 

Figure 3. Spatial distributions of SOS and data quality in the time series of OLI and VIIRS in 2013 and 2014.  378 

The top row represents the SOS detected from OLI in 2013 (a) and 2014 (e) and from VIIRS in 2013 (b) and 379 

2014 (f). The bottom row is PGQsos around SOS occurrence along the OLI time series in 2013 (c) and 2014 380 

(g) and the VIIRS time series in 2013 (d) and 2014 (h). The black vertical line and box in (a) indicate the 381 
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locations for Figures 4 and 5, respectively. The dark gray color indicates no good EVI2 observations around 382 

SOS occurrence (PGQsos=0).  383 

 384 

The north-south SOS gradient was more evident in the VIIRS data than in the OLI data. To the 385 

north, OLI SOS matched well with VIIRS SOS while larger differences were apparent in the south. 386 

This spatial inconsistency was apparently associated with the quality of the SOS detections, which 387 

was determined by the frequency and availability of OLI and VIIRS observations. The OLI PGQsos 388 

was generally higher than 20% from southwest to northeast in 2013, but it was very low in large 389 

areas across both the northwest and southeast corners because of lack of high quality OLI 390 

observations during the SOS periods. In 2014, the OLI PGQsos revealed no high quality temporal 391 

observations in large parts of the southern region. In contrast, the VIIRS PGQsos was relatively high 392 

in the southern region, particularly in 2014, although there were still various randomly distributed 393 

spots without high quality VIIRS observations during SOS periods.    394 

The spatial transect of SOS dates exhibits patches of earlier and later occurrences, although there 395 

is a clear trend from earlier in the south to later in the north (Figure 4). This change mainly follows 396 

land cover types, but a latitudinal effect cannot be discounted as the transect spans nearly two 397 

degrees of latitude. The SOS could be more than one month earlier in forests and grasslands than in 398 

croplands. This pattern was evident from 41.5°N northward, where corn and soybean were abundant 399 

and forests and grasslands were sparse. In contrast, forest and grasslands were the main cover types 400 

in the southern region, so that SOS was conspicuously early with small proportion of late SOS dates 401 

over croplands in the VIIRS time series. However, there was also a spatial pattern of poor PGQsos 402 

in the south driven by a lack of sufficient high confidence OLI observations around the estimated 403 

timing of SOS.  404 
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 405 

Figure 4. Variation in SOS, PGQsos, and land cover types along a north-south transect in 2013. (a) detections 406 

from VIIRS data, (b) detections from OLI data, and (c) land cover type. The transect location is identified 407 

in Figure 3.   408 

 409 

       Closer examination revealed that OLI SOS varied substantially even within a limited area 410 

(Figure 5). The OLI SOS displayed sharp boundaries with a difference as large as one month among 411 

neighboring crop fields and among different crop types; whereas the SOS was generally 412 

homogeneous within larger fields of the same crop type. Similarly, OLI SOS presented 413 

heterogeneous patterns between forests and croplands while it was relatively homogeneous within 414 
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local forests and grasslands. The SOS heterogeneity among different crop fields and between 415 

croplands and forests or grasslands was verified using a high resolution image (Google Earth) from 416 

June 2012, which visually indicated growth conditions among different fields (although of course 417 

the crop types might be not exactly the same between 2012 and 2013). In contrast, the VIIRS SOS 418 

only captured the large spatial patterns of SOS rather than the details in and among individual fields, 419 

but the overall coarse-scale spatial pattern corresponded well with the OLI SOS.  420 

 421 
Figure 5.  Local pattern (14280m x 14880m) of SOS from OLI and VIIRS across different land cover types in 422 

2013. (a) VIIRS SOS, (b) OLI SOS, (c) land cover type (1- other crops, 2- corn, 3- soybean, 4-hay, 5- 423 

grasslands, 6-forests, 7-water and wetlands, 8- non-vegetated area), and (d) Google Earth imagery from June 424 

2012. The location is defined in Figure 3. 425 

 426 
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3.2 Heterogeneity within VIIRS SOS pixels 427 

Figure 6 presents the heterogeneity of the OLI SOS within a VIIRS pixel (225 OLI pixels) after 428 

the low confidence SOS pixel pairs were removed using the criterion that the percent of high 429 

confidence OLI SOS pixels within a high confidence VIIRS pixel (PGQsos>40%) was over 90% 430 

(~200 pixels).  The result indicates that the heterogeneities were only distinguished in 12,583 VIIRS 431 

pixels in 2013 and in 20,707 pixels in 2014. The spatial patterns of the selected pixels between the 432 

two years were generally inconsistent (Figures 6a and 6c), because of differences in the ranges of 433 

OLI SOS SD (Figures 6b and 6d).   434 

The frequency distribution of OLI SOS SD within VIIRS pixels varied between 2013 and 2014 435 

(Figure 6b and 6d). A peak in both years appeared around 4 days of SD. However, SD frequency 436 

indicated that OLI was more heterogeneous in 2013 than in 2014. The SD frequency in 2014 was 437 

skewed right (positively skew), and the cumulative frequency was larger than 60% for SD<10 days. 438 

In contrast, the frequency in 2013 was relatively uniform in the SD range between 10 and 27 days, 439 

and the cumulative frequency was about 40% for SD<10 days. The largest SD was 40 days in 2013 440 

and 30 days in 2014.  441 
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 442 

Figure 6. Heterogeneity of OLI SOS within a VIIRS pixel with high confidence VIIRS SOS detection. 443 

Heterogeneity levels were defined using percentile of OLI SOS standard deviation in 2013 (a) and 2014 (c), 444 

and frequency distributions represented VIIRS pixels varying with OLI SOS standard deviation in 2013 (b) 445 

and 2014 (d).  Gray color in (a) and (c) represents the VIIRS pixels with either PGQsos<40% or the percent 446 

of high confidence OLI SOS pixels<90%. 447 

 448 

 Figure 7 displays the frequency distribution of high confidence OLI SOS dates within a VIIRS 449 

pixel at five levels of heterogeneity. These randomly selected VIIRS pixels represent several typical 450 

types of SOS heterogeneity across the study area. Within homogenous VIIRS pixels (PSD<20%), 451 

the OLI SOS frequency displayed a strong peak of more than 10% (>23 pixels) at the same SOS and 452 

most OLI SOS estimates were within 10 days of each other. Correspondingly, the cumulative 453 
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frequency showed a pattern of sharp increase. Within heterogeneous VIIRS pixels (PSD>60%), by 454 

contrast, the OLI SOS dates varied within a wide range spanning more than three months, and the 455 

cumulative distribution exhibited a relatively flat pattern. The frequency at the same SOS date was 456 

less than 3% (<6 OLI pixels). In some cases, where a VIIRS pixel contained several different crop 457 

types and natural vegetation with divergent SOS values, the OLI SOS frequency displayed multiple 458 

distinct peaks.     459 

 460 

Figure 7. Frequency and cumulative frequency distributions of high confidence OLI SOS within a high 461 

confidence VIIRS pixel across different levels of heterogeneity and the corresponding VIIRS SOS in 2013.  462 

 463 
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3.3 Difference between VIIRS SOS and OLI SOSag  464 

Figure 8 shows the average absolute difference between VIIRS SOS and a set of OLI SOSag 465 

aggregated by the percentile approach (as described in Figure 2) over the various levels of 466 

heterogeneity. For OLI SOSag aggregated using a specific percentile, AAD increased with 467 

increasing heterogeneity, resulting in AAD values for the most heterogeneous pixels (PSD=80-468 

100%) that were more than twice as large as the most homogenous pixels (PSD=0-20%). AAD 469 

differences in relatively homogenous pixels (PSD<60%) were generally less than 10 days, but 470 

generally larger than 10 days in heterogeneous pixels (PSD>60%). If all pixels (PSD=0-100%) were 471 

considered, AAD was similar to the values from the middle heterogeneity level, i.e., PSD=40-60%. 472 

 473 

 474 

Figure 8. Average absolute difference between VIIRS SOS and OLI SOSag at different levels of 475 

heterogeneity based on data in both 2013 and 2014. OLI SOSag was aggregated within a VIIRS pixel using 476 

the percentile approach.  477 

 478 

 479 
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At a same level of heterogeneity, AAD varied more than threefold (Figure 8), if the OLI SOSag 480 

was aggregated using different OLI SOS percentiles. AAD was very large, if SOSag was aggregated 481 

from either <10
th

 or >90
th

 percentile of OLI SOS within a VIIRS pixel. For example, AAD was 57 482 

days, if SOSag was obtained using 100
th

 percentile of OLI SOS; whereas it was 32 days, if SOSag 483 

was obtained using 0.5
th

 OLI SOS percentile in the most heterogeneous regions (PSD=80-100%) 484 

(Figure 8). However, AAD reached minimum (AADmin), if SOSag was aggregated from an optimal 485 

OLI SOS percentile. In homogenous regions (PSD=0-20%), the low AAD (< AADmin + 1 day) was 486 

reached, if OLI SOSag was selected from 5
th

 - 70
th

 percentiles. However, in the most heterogeneous 487 

region (PSD=80-100%), the low AAD (< AADmin + 1 day) was obtained, if OLI SOSag was 488 

selected from 20
th

 - 40
th

 OLI SOS percentile. The range of optimal percentiles with the low AAD 489 

varied from larger than 45% in homogeneous regions to less than 20% in heterogeneous regions. If 490 

the SOS values in the entire region were considered together (PSD=0-100%), then the AAD was 491 

distributed between those from homogenous and heterogeneous regions. Overall, AAD was smallest 492 

if OLI SOSag in a VIIRS pixel was aggregated as the date when SOS had occurred in 20%-40% of 493 

OLI pixels. In contrast, AAD was largest if OLI SOSag was considered as the date when SOS had 494 

appeared in more than 80% of the OLI pixels.  495 

Figure 9 depicts the bias between VIIRS SOS and OLI SOSag aggregated from different OLI 496 

SOS percentiles across various levels of heterogeneity. Negative bias appeared if OLI SOSag was 497 

aggregated from the 0.5
th

 - 30
th

 percentiles of OLI SOS within a VIIRS pixel, while positive bias 498 

mainly occurred if OLI SOSag was aggregated from the 40
th

 - 100
th

 percentiles. This pattern was 499 

similar for all the levels of OLI SOS heterogeneity. Similar to AAD, the bias was smaller in 500 

homogeneous regions than in heterogeneous regions. Moreover, the negative bias could be as large 501 



 

 
 

 

27 

 

as 30 days and the positive bias could be as large as 50 days. Overall, if OLI SOSag was aggregated 502 

using the timing around the 30
th

 percentile, then the bias approached zero. 503 

 504 

 505 

Figure 9. Bias between VIIRS SOS and OLI SOS aggregated using the percentile approach within a VIIRS 506 

pixel at different levels of heterogeneity based on data from both 2013 and 2014.  507 

 508 

3.4 Evaluation of SOS aggregation at different scales 509 

The relationship between VIIRS SOS and OLI SOS was evaluated by comparing VIIRS SOS 510 

with a set of OLI SOSag within a VIIRS grid (3 by 3 VIIRS pixels). We first generated VIIRS SOS 511 

in a VIIRS grid (SOSVIIRSag) using the approach of 30
th

 percentile based on the result obtained at 512 

individual VIIRS pixels (see section 3.3). The SOSVIIRSag was then compared with a set of OLI 513 

SOSag aggregated using the percentile approach within a VIIRS grid. AAD in a VIIRS grid 514 

displayed similar patterns as in a single VIIRS pixel, but with much smaller magnitudes (Figure 10). 515 

AAD was smallest in the most homogeneous regions and increased with heterogeneity. At the same 516 
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level of heterogeneity, AAD was smallest when SOSag was aggregated by choosing the date when 517 

OLI SOS occurred in 30% of OLI pixels in the relatively homogeneous grids, and at 40% of OLI 518 

pixels in the more heterogeneous grids. If SOSag in a VIIRS grid was aggregated using the timing of 519 

30
th

-40
th

 percentile of OLI SOS, then the AAD was less than 5 days in homogeneous grids and 15 520 

days in heterogeneous grids.  521 

 522 

 523 
Figure 10. AAD between VIIRS SOS and SOSag within VIIRS grids aggregated using the percentile 524 

approach at different levels of heterogeneity based on data in both 2013 and 2014.   525 

 526 
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 527 
Figure 11. Bias between VIIRS SOS and SOSag within VIIRS grids aggregated using the percentile approach 528 

at different levels of heterogeneity based on data in both 2013 and 2014. 529 

 530 

Figure 11 displays the bias between VIIRS SOSVIIRSag and SOSag in a VIIRS grid. Similar to 531 

the comparison at a VIIR pixel (Figure 9), the bias was negative if SOSag was aggregated using 532 

<20
th

 percentile of OLI SOS and the bias was positive if SOSag was aggregated from 35-100
th

 533 

percentile. The bias approached zero if SOSag was selected from 20-30
th

 percentile of OLI SOS, 534 

identical to the pixel-based result. 535 

Figures 12 presents the difference between VIIRS SOSVIIRSag and OLI SOSag aggregated using 536 

the timing at the SOS occurrence of 30% OLI pixels in a VIIRS grid. The samples were closely 537 

distributed along the 1:1 lines with slopes close to 1 in homogeneous regions. With the increase of 538 

heterogeneity, the intercept in the linear regression increased while the slope decreased, and the 539 

correlation coefficients were also reduced. AAD was less than 5 days and RMSD less than 6 days in 540 
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the homogeneous region (PSD<60%). In the most heterogeneous region (PSD=80-100%), AAD was 541 

6 days and RMSD was 8 days. If all the good SOS pixels across the regions were considered (0-542 

100% PSD), then the AAD and RMSD were 5 days and 6 days, respectively.   543 

 544 

 545 
Figure 12. Scatterplots of VIIRS SOS and OLI SOSag at different levels of heterogeneity in 2013 and 2014. 546 

The color indicates the sample density, increasing from blue to red. 547 

 548 

 549 

4. Discussion and Conclusion 550 

This study investigated and compared SOS dates as estimated from remote sensing data at two 551 

common spatial resolutions: 500 m and 30 m. The SOS at different scales was retrieved from the 552 

fused OLI data and from VIIRS observations, instead of aggregation from the same finer resolution, 553 

which avoided the risk that SOS agreement arose due to the data source being identical at both 554 

scales. It should be noted, however, that the time series of 30 m data were fused from observations 555 
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with high spatial resolution of Landsat and higher frequency of MODIS using the STARFM 556 

algorithm. Because the fusing algorithm relies on the existence of co-temporal pairs of Landsat and 557 

MODIS image to predict Landsat images on a MODIS date (Gao et al., 2006), the quality of the 558 

fused time series is dependent on the number of observations from Landsat. In 2013, there are only 6 559 

Landsat OLI observations available to use and no data available before DOY 140, so that the fused 560 

time series likely contains large uncertainties during spring. In contrast, there are 9 Landsat OLI 561 

observations in 2014 and 5 observations from DOY 70-175 (spring to early summer), which is likely 562 

to produce more reliable fused time series and more accurate SOS dates. Moreover, fused time series 563 

were affected by off-nadir observations from Terra MODIS images with reduced spatial resolution 564 

(Campagnolo et al. 2016). We expect that these results will be further explored and verified once 565 

time series observations from Sentinel-2 satellite and Landsat 8 OLI are well-calibrated and 566 

combined. 567 

The selected research area covers a wide range of SOS heterogeneity, which enabled us to 568 

explore the complexities of SOS variation in coarser resolution pixels. Within the same crop field, 569 

SOS patterns and growth conditions were relatively homogeneous because of the same management 570 

practice. In a 30 m pixel, SOS could well reflect the planting date and crop germination for specific 571 

crop varieties, because the mean size of crop fields that had a prominent and contiguous boundary 572 

with the same crop type was 0.193 km
2
 (~214 Landsat pixels) across the central US (Yan and Roy 573 

2016). However, changing agronomic practices resulted in dramatic changes of crop types and 574 

varieties among neighboring fields. As a result, the crop planting timing for various fields could vary 575 

sharply with a time difference of more than three months. A sharp difference in SOS was also 576 

evident between crops and natural vegetation across the study area, where SOS was more than one 577 

month earlier in natural vegetation than croplands. Among natural vegetation, SOS could also shift 578 
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greatly due to microclimatic changes (Augspurger et al. 2005; Fisher et al. 2006; Richardson and 579 

O’Keefe 2009). Consequently, OLI SOS SD in a VIIRS pixel was observed to be as large as 40 days 580 

in 2013 and 30 days in 2014, although the peak frequency of OLI SD appeared at 4 SD days across 581 

the study area. The heterogeneous regions with SD larger than 10 days were 40% in 2014 and 60% 582 

in 2013. Although the heterogeneity levels were defined using the cumulative frequency distribution 583 

of OLI SD in a given year and the SD differed within the same heterogeneity level between years, 584 

the relative impacts of heterogeneity on SOS detections remained constant.     585 

Comparisons between VIIRS SOS and OLI SOS by selecting only high confidence SOS 586 

retrievals (PGQsos>40%) ensured the reliability of the results. SOS detections were significantly 587 

affected by the quality of satellite observations used in the time series. Poor SOS detections were 588 

removed using PGQsos threshold during the period of SOS occurrences. PGQsos showed no 589 

consistent spatial and temporal patterns, because it was driven mainly by patterns of missing data 590 

that typically resulted from cloud cover. OLI PGQsos was very poor (insufficient high quality 591 

temporal observations) in large portions of the southern region in both years. In contrast, the VIIRS 592 

PGQsos was relatively high in the southern region and the poor VIIRS PGQsos retrievals were 593 

randomly distributed across large parts of the region. The difference between OLI PGQsos and 594 

VIIRS PGQsos was associated with the time lag of the satellite observations. OLI time series were 595 

fused using observations around 10:30am from Terra MODIS and Landsat 8, while VIIRS 596 

observations were obtained around 1:30pm. This time lag could have significantly impacted the 597 

level of cloud contamination, which was particularly evident in the southern region of the study area.  598 

Comparisons between VIIRS SOS dates and OLI SOS dates across a wide range of 599 

heterogeneities improved our understanding of the scaling effect on land surface phenology (LSP) at 600 

coarse resolutions. This step is critical in evaluating LSP quality and bridging LSP across scales. 601 
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VIIRS SOS could be well represented using optimal OLI SOS values within a VIIRS pixel or grid. 602 

In homogeneous regions, OLI SOS values in more than 60% of pixels were equivalent to VIIRS 603 

SOS. However, about 5% of earliest OLI SOS and 20% of the latest OLI SOS within a VIIRS pixel 604 

relatively deviated from the VIIRS SOS dates. This level of deviation is reasonable because the 605 

VIIRS pixels or grids were more or less mixed covers with several vegetation types and completely 606 

homogeneous VIIRS pixels were rare. This result suggests that plot-based, in-situ observations in 607 

homogeneous regions can be generally effective for the validation of LSP (Roman et al. 2011). 608 

Unsurprisingly, the most homogeneous SOS is likely to be observed within a single crop field 609 

because of similarity of agronomic management practices. In comparison, SOS in a “homogeneous” 610 

forest area could still vary considerably due to forest species distribution and microclimate resulting 611 

in SOS dates that are larger than 10 days (Fisher et al, 2006; Richardson and O’Keefe, 2009; 612 

Liang et al., 2011). In contrast, the proportion of OLI pixels with SOS dates similar to VIIRS SOS 613 

dates greatly decreased with increasing heterogeneity. Within a heterogeneous VIIRS pixel 614 

containing various plant species, the range of OLI SOS could be as large as three months. In these 615 

situations, the OLI SOS values in less than 20% of pixels were comparable to VIIRS SOS dates.  616 

 Comparing VIIRS SOS with OLI SOSag further revealed that the AAD was smallest and bias 617 

approached zero, if the OLI SOSag data were aggregated by selecting the date when SOS transition 618 

had occurred in about 30% of OLI pixels. This result was consistent for individual VIIRS pixels and 619 

for the VIIRS grids (3×3 pixels) in both 2013 and 2014. This finding is also consistent with other 620 

remote sensing studies that have found MODIS SOS dates corresponds to the timing when budburst 621 

has occurred in 20%-33% of individual stems monitored from the ground in the Harvard Forest 622 

(Zhang et al., 2006; Ganguly et al., 2010). Thus, we can conclude that the SOS detected from 623 

satellite data represents the timing at which vegetation greenup onset occurred in 30% of area in an 624 
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individual pixel despite the heterogeneity in SOS dates. The finding also supports our hypothesis 625 

that the SOS at a coarser resolution becomes detectable when vegetation starts to greenup in a 626 

certain proportion of finer resolution pixels, and that the coarser resolution SOS is associated with 627 

the earlier SOS pixels at the finer resolution rather than the later SOS pixels. 628 

 Understanding the scaling effect on LSP helps the process of validating coarser resolution SOS 629 

using finer resolution observations. Validation of satellite-based products is an important and 630 

challenging task in remote sensing; however, one of the main difficulties is how to scale plot level 631 

measurements up to the coarser resolution of spaceborne sensors (Buermann et al. 2002; de Beurs et 632 

al. 2009; Herold et al. 2008; Weiss et al. 2007). Coarser resolution LSP is commonly validated using 633 

the simple average of finer resolution data (Delbart et al. 2015; Roman et al. 2011); however, this 634 

study suggests that selecting the timing of the 30
th

 percentile at the finer resolution is biophysically 635 

meaningful, particularly in very heterogeneous areas. Based on this criterion, we have demonstrated 636 

that the VIIRS SOS was well detected because its overall difference with the OLI SOSag was less 637 

than 5 days in homogeneous regions, although the difference was larger in heterogeneous regions.  638 

      Finally, it should be noted that the result of coarser resolution SOS equivalent to finer resolution 639 

value at 30
th

 percentile was derived from OLI (30m) and VIIRS (~450m) and verified by comparing 640 

SOS aggregated in 3by3 VIIRS pixels with OLI SOS. Further studies are needed to explore how the 641 

SOS scales across various landscapes and ecosystems. To investigate SOS variations across scales is 642 

challenging, because it requires multiple sets of SOS data across spatial scales. Moreover, these 643 

multiple sets should be derived from vegetation index time series at various spatial resolutions 644 

independently rather than simply aggregated from the same finer resolution SOS dataset using 645 

aggregation approaches such as averaging, thinning, or majority filtering. Finally, 646 
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further research is needed to verify if the 30
th

 percentile is always the optimal 647 

percentile for the aggregation of LSP SOS values that are extracted by various methods.  648 

 649 
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